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A simple microscopic model of an array of water droplets separated by thin oil films is 
analysed and compared with experimental data from a range of water-in-oil emulsions of high 
volume fraction in order to delineate the nature of the cooperative effects in such systems. It is 
shown that a simple summation in series and parallel of the response of isolated particles is 
fundamentally incapable of giving an acceptable description of the experimental data as is the 
more complex theoretical model proposed by Hanai. The nature of the corrections to the 
model are considered from an experimental viewpoint, and the need for a model which is 
capable of reproducing all the aspects of the experimental situation is discussed. 

1. Introduct ion 
Dielectric spectroscopy is a convenient technique for 
the non-invasive examination of heterogeneous sys- 
tems such as emulsions and gels [1 4]. The essence of 
the technique is that the electrical response is meas- 
ured as a function of the frequency of an applied a.c. 
voltage and can be represented in any one of a number 
of equivalent forms, i.e. impedance, capacitance, ad- 
mittance or modulus. In a typical heterogeneous sys- 
tem the flow of charge is impeded by barriers and this 
gives rise to local polarizations and hence dispersions 
in the response, If the components of the system are 
themselves dipolar, as is water, then there are further 
dispersions which may be identified as belonging to 
the individual components. The ease with which the 
technique can be applied has stimulated interest over 
a number of years and two reviews have been pub- 
lished by Clausse [-2] and van Beck [5]. The problem 
is that conventional development of Maxwell's equa- 
tions allows accurate description of dilute dispersions 
of particles in a medium but are not applicable to the 
more useful case of high packing fractions. Hanai 
[6, 7] has proposed a cooperative model for such 
systems which is unfortunately based on weak as- 
sumptions and which has not been shown to be of 
general applicability. Recently, a full cooperative re- 
laxation model has been developed [8, 9] and has 
been shown to be applicable to gels [-3, 4, 10]. It is our 
intention to show that this model is applicable to high 
phase volume emulsions, but before doing so we re- 
quire to characterize the response of typical emulsions. 
This we do here. 

We start by examining the characteristic response of 
a typical stable water-in-oil emulsion. To do so we 
consider a pair of particles and the oil/emulsion film 
between them. A single particle can be characterized 

4818 

by the capacitance and conductance of the liquid that 
it contains. A pair of particles requires that we place in 
series with the first particle a barrier layer which can 
also be characterized by its capacitance and conduct- 
ance. With a thin oil emulsifier barrier and a water- 
based particle it is reasonable to assume that the 
barrier conductance will be less than that of the par- 
ticle conductance and the capacitance of the barrier 
greater than that of the particle. Hence the physical 
basis of the conventional approach to heterogeneous 
systems is an electrical model of a pair of parallel 
connected conductance and capacitance elements con- 
nected in series. From this element the complete struc- 
ture may be modelled by connecting similar elements 
in parallel across the electrode plates and stacking 
these in series through the thickness of the sample. 

Here we consider this simple approach and com- 
pare it with good experimental data in order to show 
where its defects lie and how these may be corrected. 
To do so we make use of the cluster model of relaxa- 
tion [8, 9] which is based on the cooperative relaxa- 
tion of a volume distribution of dynamically inter- 
active particles and hence is ideally suited for applica- 
tion to emulsion systems. 

One experimental difficulty that is encountered is 
the extraordinarily wide range of relaxation times 
present in water-oil-emulsion systems. Four  such re- 
laxation times are of significance; the relaxation time 
for the dipoles forming the liquid within the particles, 
which may be typically of the order of nanoseconds; 
the relaxation time for the transport of charge across a 
single emulsion particle, which may be of the order of 
microseconds; the relaxation time of charges separ- 
ated by a single oil-emulsifier barrier layer which we 
estimate to be of the order of kiloseconds and the 
relaxation time of the bulk macroscopic sample which 
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can be of the order of tens of seconds. The seconds to 
nano-second range emphasizes the need for extensive 
high-quality experimental data. Without this it is not 
possible to determine, with any certainty, which pro- 
cess is which and hence to make full use of the in- 
formation that is available. The technique of data 
normalization [11, 12] is effective in this situation and 
recourse will be made to this helpful method of ana- 
lysis when necessary. 

2. T h e o r y  
The problem of high phase volume dispersions has 
been considered by Lissant [13] who has proposed 
two regular plane-surfaced structures as possible can- 
didates for the form of the particles. These are the 
tetrakaidecahedron (a truncated octahedron) and the 
rhomboidal dodecahedron. It was suggested that in- 
complete packing is achieved by the rounding off of 
the vertices of these space-filling structures. Consid- 
eration by Lissant of a geometrical factor, the ratio of 
the surface area of a particle to the two-thirds root of 
its volume, has shown that between 68% and 74% 
internal phase the tetrakaidecahedron structure 
would be possible but would be likely to break up into 
spherical particles of a range of sizes. Between 74% 
and about 94% internal phase, the rhomboidal dode- 
cahedron packing would be preferred, whereas above 
94%, the tetrakaidecahedron would be geometrically 
preferred and physically stable. 

One difficulty of either of these regular structures is 
that because of the multi-faceting it is not possible to 
determine either an effective cross-sectional area or an 
effective barrier thickness for the boundary layers 
between the particles along a specific direction. We do 
know, however, that for a uniform filling of particles 
the boundaries must traverse the complete area of the 
electrodes and hence we take this area, A, as the 
effective area and denote the effective thickness of a 
single barrier, normal to the electrode plane, as  d b. We 
do not expect d b to be identical to the length of the 
hydrocarbon chain of the emulsifier but we accept that 
the thickness of the films between the droplets is likely 
to be independent of the dispersed phase volume 
fraction and a function of both the surfactant chain 
length and of the forces across the thickness of the 
film. However, we do expect d b to change in magni- 
tude if the physical structure or phase of the system 
were to change. 

Consider a cell with plane parallel electrodes of area 
A and separation D filled with particles of a regular 
shape of size L. If the capacitance of each particle is 
Cp, the effective geometrical capacitance of the three 
dimensional array is 

Ceff = Cp(A/L2) (L /D)  

= Cp(A/LD)  (1) 

But Cp is itself given by 

Cp = apeo(a/d ) (2) 

where % is the permittivity of free space (8.854 
• 10 -~2 Fro- l ) ,  ep the relative permittivity of the 

material forming the particle and a and d are the 

effective area and length of the particle. We relate 
these to the particle size by setting 

a L 2 

d = Y ~  

= v L  (3) 

where y (~< 1) is an undetermined structure factor. 
Hence we have 

A 
Ceff = % % 7 ~  (4) 

and, as the empty cell capacitance, Co, is given by 
%(A/D)  

~eff = s 

= Ceff/Co (5) 

defines the effective permittivity of the liquid within 
the particles without knowledge of the structure fac- 
tor, y. It is clear, from Equation 3, that y will take its 
maximum value of unity for a system of tightly packed 
regular cubes with their faces parallel to the electrode 
plane. As suggested for the effective particle spacing, 
we expect y to be sensitive to the structure of the array 
of the particles and note that through y we have 
related the microscopic permittivity, %, to the macro- 
scopic value, ~af. 

A similar approach can be developed for the con- 
ductance of the array, Gef f. If the conductivity of the 
liquid within the particle is C~v, then we have 

O e f f / C  0 = O'p'~/~ 0 (6) 

The relaxation time which can be associated with the 
measured capacitance and conductance, Cef f and Geff, 
is then given by 

T 1 ~ C e f f / G e f  f 

~- Eo Eeff/O'p 

= tp (7) 

where ~:p is the relaxation time of the material within 
the particles. Hence the observation of the macro- 
scopic capacitance and conductance yields informa- 
tion about the microscopic system. 

We use the term "relaxation time" in its general 
form which is given by the definition 

"c = R C  

d A 
= ~ o ~  

= ~ o / ~  (8) 

where the symbols have their conventional meanings. 
Recasting this equation into the form of a complex 
capacitance 

C(e0) = C'(~0) - iC"g0) (9) 

and defining c0 c as the frequency for which 

c'(o~c) = a/o~o 

= C"(r (10) 

we have that each crossing of the real and imaginary 
components of the complex capacitance (impedance, 
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admittance or modulus) in a dispersion diagram 
defines a relaxation time for the system with 
1j n : (COo,n) - 1 .  

We now assume that the barriers between the par- 
ticles are of the same area, a, as that of the particles so 
that the actual barrier capacitance is given by 

Cb = ao ab ~(a/db) (11) 

where 13 is a second barrier structure factor, ab, the 
relative permittivity of the barrier material, is likely to 
be small for the non-polar  hydrocarbon chains in- 
volved. We relate this capacitance to the cell size as 

A L  
Cb(eff) : Cb L 2 d 

a A 
= %%Tu 13 

A = %%713 ~ (12) 

The conductance of the barrier is given by 

G b = ~bf3(A/db) (13) 

so that the relaxation time associated with a single 
barrier is 

A d b 

"['2 = %% db O.bA 

~0 ~b/eYb 

= T b (14) 

In both Equations 7 and 14 the resistance and capaci- 
tance elements taking part  in the relaxation are in 
parallel and hence the areas and thicknesses cancel 
out so that the macroscopic relaxation times give 
direct measures of the microscopic values. We note, 
too, that these values will be independent of the size of 
the particles and therefore independent of any dis- 
tribution of sizes that may exist. 

This is not the case when the charges associated 
with transport  within the particles are blocked by the 
capacitance of the barriers. In this case the Maxwell-  
Wagner [5, 12] relaxation time for the series resistance 
capacitance combination is given by 

A /  A \  -1 

: (EOEp/O'p) (dpldb) ([3/y) (15) 

which lies between Zl and %. 
Electrically the system we have considered is indi- 

cated in Fig. la, with the cell properties in series with 
those of the barrier and both are scaled in terms of the 
effective measured conductance and capacitance. The 
measured capacitance for this circuit can be expressed 
in the form 

1( 1 )1 
lc0 G b + imC b + Gp + imCp (16) 

This relationship can be displayed most  easily on a 
log/log plot of the components of the complex capaci- 
tance 

C(m) = C'(m) - iC"(m) 
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Figure 1 Schematic diagrams of (a) an elementary unit in an emul- 
sion. G o and Cp are the conductance and capacitance of a repres- 
entation emulsion particle and G b and C b the conductance and 
capacitance of a single barrier between two particles; 
(b) representation in logarithmic coordinates of the complex capaci- 
tance resulting from the circuit in (a). ~1, z2 and % are relaxation 
times as described in the text. 

as functions of the frequency m, as in Fig. lb. The 
imaginary component,  given by the conductances G, 
are shown, in the limiting conditions of high and low 
frequencies, as parallel lines with negative slope of unit 
magnitude (C"(m) = G/o)) with Gb<<G p. The relaxa- 
tion times zl,  "172 and ~3 are indicated in the figure. 

Equation 16 can be developed in an analytical form, 
but for our purpose, Fig. lb  is a more useful method of 
presentation. From the figure we see that the fre- 
quency range required to observe the total response 
has to be in excess of 

"[1/12 2 = ~p Gb /~b  Gp 

= (%/%)(CYb/%,) (17) 

The magnitudes of the permittivities range from al- 
most 80 for water to 2.5 for a typical hydrocarbon, 
giving a ratio of 32. The dominant term, however, is 
the ratio of the conductivities which can be of the 
order of 10 l~ or larger. Hence we require a frequency 
range of at least 108 in order to resolve both processes, 
without even extending into the outer wings of the Zl 
and % processes. Considering a particle of pure water 
at room temperature with a conductivity of 10 -4 S the 
relaxation time, ~1, is 10- s s, equivalent to a frequency 
of 1.8 • 104 Hz so that it would be necessary to meas- 
ure down to 10 -4 Hz [14] in order to obtain the full 
spectrum of the response. 

In the above paragraphs we have followed conven- 
tion in assuming that the z3 relaxation process is a 
Maxwell-Wagner  effect, in which the conduction 
within a particle is blocked by the capacitance associ- 
ated with the walls of the same particle. As the com- 
ponents are in series, we have a well-defined relaxation 



time, as shown in Fig. lb, and hence the form of the 
relaxation is given by 

1 - im'c 3 
C(m) = C O 1 + (ff)123) 2 (18) 

In particular we note that for 

co --, 0, C'(m) ~ C o and C"(m) oc co (19) 

and 

C0 + O O ,  C ' ( ( . 0 )  o c  (.o 2 with C"(m) oc co -1 (20) 

which are the characteristic of the conventional Debye 
response [ 15]. 

As an example of the type of response that can be 
obtained, we show, in Fig. 2, experimental data for the 
complex capacitance as a function of frequency for a 
particular water-in-oil system. Two sets of data, meas- 
ured at different temperatures, have been normalized 
together to give a single extended-frequency plot. In 
the figure the ~3 relaxation lies in the region of the 
overlap in the data. The limiting behaviour of Rela- 
tionships 19 and 20 are indicated by the dashed lines. 
It is clear that the experimental data do not fit these 
relationships. Indeed the only point of agreement is 
that the blocking capacitance, the capacitance of the 
barrier around the particles, is non-dispersive. A more 
general Maxwell Wagner effect in which the barrier 
capacitance is dispersive has been reported [-12, 16] 
but does not apply in this case either. 

The alternative modification is to consider a non- 
dispersive barrier layer and an imperfect particle con- 
ductance, i.e. 

G(c0) = Go(ira) 1-s (21) 

with 0 < s < 1. Straightforward algebra gives the 
complex capacitance of the series connected capaci- 
tance and conductance as 

C(co) = Co[1 + (Co/Go)(im)s] -1 (22) 

from which we can derive the asymptotic frequency 
responses 

co --, 0, C'(m) --, C o and 

C"(m) --* (Co)2(G0) lcesin(src/2) (23a) 

-7 

_',, co-1 I 1 l 
*'+ ~2 1:3 "Cl 

- -  -9 *" C'(w) 
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Figure 2 The complex  capac i t ive  response  of a representa t ive  wa- 

ter- in-oil  emuls ion.  These da ta  were measu red  at  247 and  288.5 K 
and normal i zed  to the single response  curve. The do t ted  lines are the 

Debye  character is t ics  of E q u a t i o n s  19 and  20, and  the power - law 
re la t ionships  in the wings of the %, are ind ica ted  by dashed  lines. 

The charac te r iza t ion  of this  and  other  samples  is given in Table  I. 
The p lo t  is scaled at  285 K. 

and 

m - ,  oo, C'(m) --* G O m -s cos(src/2) (23b) 

C"(m) --+ Gom-Ssin(s~/2) (23c) 

with the loss peak wings being of fractional power law 
form with frequency and symmetrical, on a log/log 
plot, about the peak loss frequency. This is the charac- 
teristic of the empirical Cole-Cole [17] dispersion 
function. From the data in Fig. 2 we estimate s from 
Equation 23c to be 0.76 and from Equation 23a to 
be 0.47, and hence the essential symmetry which is 
required for the Cole-Cole model has not been 
observed. 

We conclude then, that the conventional approach 
for the interaction of particles within an array, which 
is obtained by extension of a simple Maxwell-Wagner 
response, does not correspond with the experimental 
situation which requires at least an additional para- 
meter in order to describe the asymmetry of the ex- 
perimentally observed response. In order to establish 
a reasonable framework within which it will be pos- 
sible to consider an alternative approach it is essential 
to have detailed knowledge of the exact nature of the 
relaxation dispersions in water-in-oil emulsions. This 
we do in the present paper. 

3. Experimental procedure 
The data reported here were obtained with the aid of a 
Solartron frequency response analyser (FRA) config- 
ured with the Chelsea Dielectrics Interface. The meas- 
uring range was from 10 laHz to 10 MHz and care was 
taken in the design of the sample cells in order to 
minimize the effects of lead resistance. A single meas- 
urement at l0 gHz takes almost 2 days and, as the 
sample responses are temperature sensitive, the prac- 
tical limitation on low-frequency measurements is the 
temperature stability of the sample cell. In practice 
most measurements were limited to the frequency 
range above 1 mHz. As the FRA uses a digitization 
technique there are truncation errors for very large or 
very small phase angles, with the error appearing as a 
random noise in the complex component of smaller 
magnitude. A sample cell using platinum electrodes of 
area 1.63 x 10  - 4  m 2 and capacitance 0.236 pF when 
empty was used during the larger part of the investiga- 
tion. A measuring signal of 1 V r.m.s, amplitude was 
used after it had been checked that the response was 
linear with this value of voltage. 

The emulsions were prepared using a planetary 
mixer with a primary orbital speed of 180 r.p.m, and a 
secondary orbital speed of 500 r.p.m. Over the range 
of samples the average droplet size was measured as 
about 2 I, tm. Two different surfactants were used in the 
investigation and these are referred to as surfactants A 
and B. Characterization of the samples reported here 
is presented in Table I, from which it can be seen that 
the series of samples were obtained by variation of the 
salt and water content whereas the total surfactant 
content was maintained at either 1.5% or 2%, by 
volume. 
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T A B L E I Characterization of the samples reported in this paper. All samples were of the water-in-oil type with the water content being a 
mixture of saturated nitrate or chloride solution and pure water. The calcium nitrate was used in the form of calcium nitrate tetrahydrate 

Sample Measuring Salt content Water Oil Surfactant Fig. 
no. temp. (K) (%) (%) 

Type (%) Type (%) 

1 285.1,244.7 Ammonium nitrate 47.5 0 3 A 2 2, 4c 
Calcium nitrate 47.5 

2" 329.4, freeze fracture Ammonium nitrate 37.5 0 3 A 2 6, 7, 
Calcium nitrate 57.5 4a, b 

3 296.3 Ammonium nitrate 78.7 16 3,8 A 1.3 5a 
B 0.2 

4 299.2, 326 Calcium chloride 40.0 54.5 4 A 0.75 5b, 8 
B 0.75 

5 296.5 Ammonium nitrate 56.8 37.9 3.8 A 0.5 6a 
B 1.0 

6(a) 297 Ammonium nitrate 71.0 23.7 3.8 A 1.5 6b 

"A mixture of 47.5% calcium nitrate tetrahydrate and 10,0% anhydrous calcium nitrate was used. 

4. Results  
In Fig. 2 we have presented data measured on an 
ammonium nitrate/calcium nitrate/oil and emulsifier 
system at two temperatures. The plot has been scaled 
at 288.5 K and the data set measured at 244.7 K has 
had its frequency values multiplied by 1.3 x 104 in 
order to bring these data into alignment with those 
obtained at the higher temperature. Indicated in the 
plot are the values for the capacitances Cb and Cp and 
the loss associated with the conductances G b and Gp, 
as described in Fig. 1. The data for Fig. 2 was obtained 
with an early cell for which the empty capacitance was 
0.856 pF and hence, from Equation 5, ~eff is 5.8 and eb 
is 440. The barrier conductance can be obtained from 
the low-frequency data as 5.6 x 10-11 S, and hence z2 
is approximately 2 x 10 -2 Hz -1. An electron micro- 
graph of this emulsion is shown in Fig. 3 and indicates 
a highly uniform particle size in the range 1-2 gm 

diameter. Taking the mean size as 1.5 gm and making 
use of the ratio of permittivities, we estimate the 
barrier thickness as of the order of 1 nm for the 
measured oil-surfactant mix permittivity of 2.5. 

The essential differences between the measured 
spectral response in Fig. 2 and the model equivalent of 
Fig. lb are the poorly defined Maxwell-Wagner re- 
sponse with relaxation time z3 which has already been 
discussed, and an additional loss peak designated as ~4 
in Fig. 2. The evidence is that the capacitance associ- 
ated with the z,  process is in parallel with the barrier 
conductance and hence is likely to be due to a dipolar 
content in the oil/emulsifier. In particular it is possible 
that the process could be associated with the pockets 
of oil/emulsifier formed between the corners of imper- 
fectly matching particles. We shall return to consid- 
eration of this process in Section 4.3 after examination 
of the ~3 response. 

We note that in Fig. 2, even with some fourteen 
orders in magnitude of normalized frequency we have 
still not extended sufficiently into the high-frequency 
region to observe the solution dispersion. For water 
solutions this typically occurs in the region of 
100 GHz at room temperature, some four orders of 
magnitude higher than that presented in the normal- 
ized plot. Measurements in this frequency range re- 
quire sophisticated waveguide techniques. 

4.1. The  zl and  ~2 re laxa t ion  p r o c e s s e s  
As defined in Equations 7 and 14 these are character- 
istic of parallel resistances and capacitances as can be 
seen in Fig. 2 for ~2. As discussed in Section 4.2, a 
feature of the emulsion response is that the conduct- 
ance, Gp, is dispersive so that the loss is not propor- 
tional to the inverse of the frequency. Nevertheless, 
Equation 10 allows us to define the relaxation time. As 
the capacitance Cp is non-dispersive the magnitude of 
the relaxation time is controlled by the loss associated 
with the z 3 process. 

Figure 3 Freeze fracture scanning electron micrograph of Sample 2. 
10 kV 
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4.2. The % relaxation process 
The Debye nature of the Maxwell-Wagner relaxation 
process, cf. Equations 19 and 20, implies that the 



process occurs without interaction between the rela- 
xing elements [9, 10, 13]. Debye's original model for a 
rotating dipole [15] specifically considered that single 
dipoles were acted on by a common external field and 
restrained by a common macroscopic viscosity, so 
that the total response can be obtained by simple 
summation of the individual responses. It is now ac- 
cepted that the broadening of loss peaks is due to 
some form of cooperative interaction and that the 
degree of broadening is a measure of the amount of 
this interaction [12, 18, 19]. A general cooperative 
relaxation model has been established by two of the 
authors [8, 9] and considers exactly the type of situ- 
ation described here in which clusters (water particles) 
can relax internally in a cooperative manner but also 
hierarchically, so that the collection of particles re- 
laxes cooperatively to give the total response of the 
assembly. In terms of this cluster model of relaxation, 
we can associate our particles with the elemental 
clusters and the exchange between clusters, which 
leads to the dynamic equilibrium of the assembly, as 
the equivalent of relaxation through the oil/emulsion 
barriers between the water particles. In the cluster 
model the total magnitude of the dispersion, X(0), is a 
measure of the number of responding particles and the 
dipole moment associated with each. Hence we should 
not associate the increment (C b - Ceff) in the capaci- 
tance with a simple barrier property as in the 
Maxwell Wagner case. 

An essential feature of the cluster model of relaxa- 
tion is that fractional power-law dispersions are pre- 
dicted, with the loss peak exhibiting an asymmetry in 
the general case, as observed in Fig. 2. In terms of 
the cluster model the higher frequency exponent, s 
(=  0.76), is equivalent to an efficiency for energy ex- 
change within the particles of 1.0-0.76 = 0.24 and the 
lower frequency exponent of 0.47 represents the effici- 
ency of exchange between clusters. Unconstrained li- 
quids normally have internal exchange efficiencies 
close to zero and high values of the inter-cluster 
exchanges that are close to unity E20] so we see that 
the effect of emulsification is to decrease the inter- 
particle exchanges whilst increasing the intra-particle 
exchanges. 

In Fig. 4 we present the temperature dependence of 
the v3 loss peak as measured on two different samples, 
the compositions of which are given in Table I. The 
data were obtained in two of the cases on cooling the 
samples from room temperature, whereas the third 
sample, Sample a, was measured after cooling to 
223 K and holding the emulsion at low temperatures, 
whereas for Run b, a different sample of the same 
material was cooled from room temperature and held 
at low temperatures whilst a set of measur.ements were 
made and then heated. It is clear from comparison of 
Fig. 4a and b that ageing takes place even when the 
sample is cool. It was for this reason that direct 
cooling of an as-prepared sample was used to obtain 
representative data. The data shown for Sample c were 
measured during its initial cooling run and shows the 
characteristic s-temperature dependence of a glass- 
forming system with the temperature at which the 
gradient of this plot becomes infinite being the glass 
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Figure 4 Arrhenius plot of the inverse of the "% relaxation peak for 
(a, b) two samples of Mix 2 and (c) one of Mix 1. 

transition temperature, Tg [21]. This set of data shows 
an activated process at high temperatures leading into 
the glass transition region with the glass transition 
temperature in the region of 218 K. It is known that 
the ammonium nitrate calcium nitrate solution used 
for these samples forms a glassy solid and hence these 
data confirm that the % relaxation is associated with 
the solution within the particles of the emulsion. 

4.3. Th e  z 4 re laxa t ion  p r o c e s s  
In Fig. 2 we have labelled the additional loss peak in 
the region of 100 Hz the r4 relaxation, and noted that 
the process leading to this dispersion was in parallel 
with the barrier conductance. A range of different 
emulsion systems has been examined and the charac- 
teristics obtained in this dispersion region for all of 
these are shown in Figs 5 and 6. 

Fig. 5a shows the response measured on a system of 
94.7% nitrate and water solution, 3.8% oil and 1.5% 
surfactant. On changing the surfactant to a mixture of 
1.3% of the original and 0.2% of the alternative the 
response shown in Fig. 5b was found. Fig. 6 shows a 
similar difference from a second pair of emulsions in 
which the differences are also in the surfactant and its 
volume fraction, as given in Table I. A common cell 
was used throughout these measurements so that a 
direct comparison can be made. It is clear that the 
presence (or absence) of the ~4 feature depends on the 
emulsifier used. The lowest level of dispersion was 
observed with a mixture of emulsifiers, which may 
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Figure 5 Capacitive dispersions for (a) Sample 3 and (b) Sample 4. 
Note the increase in loss, C"(c0), in the region of 30 Hz in (b) which 
we have labelled ~4. 

indicate local blocking of dipole motion by an inter- 
action between the emulsifiers. 

4.4. The d.c. conduc tance  
The lowest frequency process that can be seen in Fig. 2 
is that due to the d.c. conductance and which gives rise 
to the (parallel) relaxation ~z- In Fig. 7 we present data 
measured at a high temperature (329.4 K) and over a 
frequency range down to 100 gHz. This has revealed a 
further dispersion in the capacitance but the loss con- 
tinued to be dominated by the d.c. conductance. The 
power law behaviour shown by the discontinuous 
lines in the figure is that predicted for a true 

Maxwel l -Wagner  charge blocking process with the 
blocking barrier having a capacitance of the form 

C ( ~ )  oc ( i~)  -0"4 (24) 

Such blocking layers have been observed with other 
emulsion systems and have been assigned to the 
formation of an oil-emulsifier blocking film on the 
surface of the electrodes of the cell [4, 10]. As the 
blocking film may be a monomolecular layer or a 
charge double layer, the barrier capacitance can be 
high. Examination of the low-frequency response in 
Fig. 7 indicates that the barrier capacitance will be in 
the region of l0 -2 F which gives an effective barrier 
thickness of about 1.5 x 10- to m even on taking the 
permittivity as that of water. We note that the charac- 
teristic (ion) -~ can be obtained for a diffusive barrier 
layer and hence we postulate that the blocking layer 
observed here is somewhat diffusive in nature. There is 
no evidence that the transport of charge in the bulk of 
the emulsion is other than a perfect conductance al- 
though of small magnitude (1.4x 10 - t ~  S) and we 
consider that this weak conductance is due to impu- 
rities in the oil-emulsion layers and because of the 
diffusive nature it is likely to be due to ions. 

This is not the case with the de-emulsified sample 
whose response is shown in Fig. 8. The lowest fre- 
quency process here is characterized by an anomal- 
ously large dispersion in both capacitance and loss 
with C(~0) oc (k0) -p and p = 0.965. The value of p has 
been determined to a high accuracy by making use of 
the relationship 

C"(c0)/C'(m) = cot(pro/2) (25) 

for in this case the ratio of the capacitances is large 
(and constant). In terms of the cluster model what was 
a perfect conductance before de-emulsification has 
now become an imperfect charge transport with an 
efficiency of transport of 0.965. The figure shows that 
de-emulsification has not removed the z4 relaxation 
process although the dominance of the electrode bar- 
rier layer has now weakened. 

The magnitudes of the d.c. conductances for the 
samples whose characteristics are shown in Fig. 5a, b 
and 6b are identical and significantly different to that 
observed in Fig. 6a. All of these samples were meas- 
ured at a temperature of 298.5 _+ 2 K. Examination of 
Table I shows that it is unlikely that the difference is 
due to the solution, whereas a pattern can be seen in 
terms of the surfactant mix. In Fig. 9 we plot the 
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Figure 6 Capacitive dispersions for (a) Sample 5 and (b) Sample 6. Both of these samples are based on ammonium nitrate solutions but again 
there is a significant difference in the x 4 process. 
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Figure 8 A measurement on Sample 8 after de-emulsification had 
taken place. As for the previous figure, this measurement was made 
at a high temperature and the results can be compared. Physically 
the structure of this sample was disordered. 

values of the d.c. conductance as a function of the 
concentration of surfactant A at a constant surfactant 
concentration of 1.5%. It is clear that the d.c. conduct- 
ance is sensitive to the nature of the surfactant and 
that the bulk conductance decreases when A forms 
less than one-third of the total. In the same figure we 
also give the constant capacitance, Cb, which we ob- 
serve is also a function of the surfactant mix. In terms 
of the simple model outlined in Section 1 we can relate 
C b to the inverse of the thickness of the barrier layers 
so that we might expect a high capacitance (thin 
barrier) to be associated with a high conductance if the 
conductance is basically a leakage from cell to cell or 
else with a low conductance if the conductance paths 
are through the inter-particle barriers. It is clear that 
the latter is not the case here and our d.c. conductance 
is basically a leakage current and sensitive to the 
thickness of the barriers. 

5 .  D i s c u s s i o n  
In our analysis of the experimental situation, we have 
made use of the simplest electrical model of an emul- 
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Figure 9 Logarithmic plots of the low-frequency conductance and 
the capacitance, Cb, as functions of the concentration of A in the 
surfactant mix. 

sion structure. There are two reasons for doing so. 
Firstly this allows us to concentrate on the physical 
construction of the emulsion. We have also investig- 
ated a more complicated approach in which we took a 
reasonable model of the particles, that is their size and 
shape, emulsion/oil barrier thickness, and cell geo- 
metry as our elements. This resulted in a response 
characteristic identical to that presented in Fig. lb  so 
it gave no additional information about  the form of 
the response than the simple model used here. A 
second alternative was to use the Hanai  [-6, 7] model 
which requires solution of a third-order equation [22]. 
Having constructed suitable computer programs to do 
this, it was observed that the response plots, as a 
function of frequency over a reasonable range of var- 
iables, were again of the form of Fig. lb. A detailed 
examination of the Hanai  function has been carried 
out and the results of these calculations are reported 
in Table II. A standard water-in-oil emulsion has been 
considered and the forms of the spectral response and 
the magnitudes of its characteristic parameters are 
reported. We have termed the high volume fraction 
dispersions as being of the Cole-Davidson form but 
the high-frequency side of the loss peak exhibited 
continuous curvature from the peak loss out over two 
or three magnitudes of frequency before the Debye 
gradient was obtained. 

Examination of the Hanai  approach shows an in- 
valid assumption in the development of the model 
from low volume fractions, < 30%, to high volume 
fractions. The assumption makes use of the volume 
fraction as the variable of integration in order to 
model, in some way, the cooperative effects that set in 
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T A B L E  II  Characterization of the Hanai model of cooperative dispersion as determined from Clausse and Royer's description 1-24]: 
81 = 80.4, 0-1 = 10-3, ~2 = 2.5, 0" 2 = 0 (water-in-oil) 

Vol. fract. Form of dispersion Parameterization a 

As ~ fop 
(Hz) 

0.05 Debye 0.042 2.874 9 x 104 
0.10 Debye 0.107 3.322 8 x 104 
0.20 Debye 0.368 4.513 7 x 104 
0.40 Debye 2.63 8.94 5 x 104 
0.50 Cole-Cole, ~ = 0.025 7.05 12.95 4 x 104 
0.60 Cole-Cole, ct = 0.045 19.08 19.1 3 x 104 
0.70 Cole-Cole, zt = 0.07 69.7 28.4 1.7 • 10'* 
0.80 Cole -Cole, zt = 0.13 346 38.7 6 • 103 
0.85 Cole-Davidson b 692 48.9 5 x 103 
0.90 Cole-Davidson b 2.4 • 103 58.2 103 
0.95 Cole-Davidson b 2 • 104 58.6 102 
0.975 Cole-Davidson b 1.6 • 105 74.4 20 

a Ae is the magnitude of the dispersion in the permittivity; e~ is the "infinite" frequency permittivity, and mp is the frequency of the maximum in 
the loss. 
b Note that the process referred to here as Cole-Davidson is poorly defined in that there is no region with a well-defined power-law 
characteristic for 03 > O~p but a region of continuous curvature from the peak loss to 03-1 over two or three orders of magnitude in frequency. 

for the higher volume fractions. There was no evidence 
from the calculations that in fact this had been done. 

We have shown, from examination of the dispersion 
characteristics of a range of emulsions, a number of 
general features. There is broad agreement with a 
simple model of a particle which is electrically in series 
with its surface barrier. Within the accessible fre- 
quency range no information was available about the 
nature of the dispersion in the liquid itself but the 
temperature dependence of the ~3 relaxation shows 
clearly, in this investigation at least, that it is the salt 
solutions that are contained in the particles. The ef- 
fective thickness~ of the barriers around the particles 
can be determined from Equation 12, corrected for the 
numbers of layers of particles in the emulsion sample. 
This gives d b for a single layer as 0.12 nm whereas 
extrapolation to the Maxwell-Wagner barrier in 
Fig. 7 suggests a single barrier thickness of an order of 
magnitude less. 

The most important feature reported here is the 
form of the dispersion of the z 3 loss peak. We have 
shown that it is neither a Debye, a Cole-Cole, nor a 
Cole-Davidson dispersion, nor of the distorted Cole- 
Davidson form observed from the Hanai function. 

At very low frequencies, two types of dispersion 
have been observed. For a de-emulsified sample the 
imperfect charge transport in the disordered structure 
leads to an equivalent dispersion in the capacitance 
and a constant phase response for the system. In the 
ordered emulsion a conductance, characterized by a 
perfect inverse frequency dependence of the dielectric 
loss, in parallel with a power-law dispersion in the 
capacitance, has been observed. It has been deduced 
that the capacitance dispersion is due to a 
Maxwell Wagner charge blocking by a barrier layer 
which is itself dispersive due to space charge build up 
at the electrodes and a diffusive transport of the car- 
riers in this region. 

One new relaxation process has been found and 
examined. In the frequency range lying between the z3 
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and "1~ 2 loss peaks, an additional process has been 
observed and related to the surfactants used to form 
the emulsions. In particular it was noted that a mix- 
ture of surfactants reduced the effect of this loss pro- 
cess and hence it is less likely that it is due to impu- 
rities in the surfactants than to an inherent property 
within the mix of surfactants. 

6. Conclusions 
The present investigation of the dielectric responses of 
a range of emulsion systems has shown the need for 
careful experimental examination of specific systems 
in order to carry out critical evaluations of each of the 
individual features that have been delineated. It is 
clear from the work reported here that the cooperative 
nature of the system can best be observed in the z 3 
response. At higher frequencies than those reported 
here the response will be dominated by the water or 
solution, and hence the frequency region of interest 
lies below about ~ 10 MHz, At frequencies in the 
microhertz range the response is dominated by charge 
transport within the bulk of the sample which gives 
useful information about the long-range order. The 
frequency range in which useful information about the 
nature of the cooperative effects of the emulsion, 
which gives it its stability, can be obtained between the 
millihertz and megahertz range, the region of the z3 
and z4 dispersion processes. 
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